- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Bashir, Beenish (3)
-
Alotaibi, Maha_M (1)
-
Arkfeld, Eric (1)
-
Clayborne, Andre Z (1)
-
Clayborne, Andre Z. (1)
-
Clayborne, Andre_Z (1)
-
Harrison, Daniel M. (1)
-
Luo, Chao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metalloporphyrins and porphyrins (MPs) have garnered increasing attention as potential candidates for molecular-based electronic devices and single-atom catalysis. Recent studies have found that electronic structure calculations are important factors in controlling the performance of MPs as building blocks for single-molecule devices. Our study investigates metalloporphyrins with central 3d-metals from Sc to Cu and chalcogen containing anchoring groups such as -SH, -SeH, and -TeH substituted at the meso-position of the porphyrin rings. We carried out Density Function Theory (DFT)-based calculations to determine the ground state geometry, spin multiplicity, spatial distribution of the molecular orbitals, and electronic structure descriptors to gain insights into the reactivity trends and possible impact on factors influencing electron transport properties. The results suggest that the central metal shapes the spin multiplicity, while variations between sulfur, selenium, and tellurium play a role in charge distribution. This study provides insights into how the selection of the central metal and control of spin channels influence the electronic structure and reactivity of metalloporphyrin molecules. The knowledge provided here can play a role in the design of porphyrin-based molecular materials for diverse applications in molecular junctions, catalysis, photovoltaics, and sensing.more » « lessFree, publicly-accessible full text available May 22, 2026
-
Harrison, Daniel M.; Bashir, Beenish; Arkfeld, Eric; Clayborne, Andre Z.; Luo, Chao (, ACS Applied Energy Materials)
-
Bashir, Beenish; Alotaibi, Maha_M; Clayborne, Andre_Z (, The Journal of Chemical Physics)Porphyrins are prime candidates for a host of molecular electronics applications. Understanding the electronic structure and the role of anchoring groups on porphyrins is a prerequisite for researchers to comprehend their role in molecular devices at the molecular junction interface. Here, we use the density functional theory approach to investigate the influence of anchoring groups on Ni and Zn diphenylporphyrin molecules. The changes in geometry, electronic structure, and electronic descriptors were evaluated. There are minimal changes observed in geometry when changing the metal from Ni to Zn and the anchoring group. However, we find that the distribution of electron density changes when changing the anchoring group in the highest occupied and lowest unoccupied molecular orbitals. This has a direct effect on electronic descriptors such as global hardness, softness, and electrophilicity. Additionally, the optical spectra of both Ni and Zn diphenylporphyrin molecules exhibit either blue or red shifts when changing the anchoring group. These results indicate the importance of the anchoring group on the electronic structure and optical properties of porphyrin molecules.more » « less
An official website of the United States government
